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Abstract
In this paper we present calculations of thermodynamic functions within
Zhang’s SO(5) quantum rotor theory of high-Tc superconductivity. Using
the spherical approach for three-dimensional quantum rotors we derive
explicit analytical formulae for entropy and specific heat related to the lattice
version of the SO(5) nonlinear quantum sigma model. We present the
temperature dependence of these quantities for various settings of relevant
control parameters (quantum fluctuations and chemical potential). We find our
results in overall qualitative agreement with basic thermodynamics of high-Tc
cuprates.

1. Introduction

A theory unifying antiferromagnetism (AF) and superconductivity (SC) to describe the global
phase diagram of high-Tc superconductors was recently proposed by Zhang [1]. In this
approach, based on symmetry principles, a three-dimensional order parameter (the staggered
magnetization) describing the AF phase and a complex order parameter (with two real
components), describing a spin singlet d-wave SC phase, are grouped in a five-component
vector called a ‘superspin’. The SO(3) symmetry of spin rotations (which is spontaneously
broken in the AF phase) and the electro-magnetic SO(2) invariance (whose breaking defines
the SC phase) along with well defined AF to SC and vice versa rotation operators form SO(5)
symmetry. In the Zhang theory both ordered phases arise once SO(5) is spontaneously broken
and the competition between AF and SC is related to the direction of the ‘superspin’ in the
five-dimensional space. The low-energy dynamics of the system is determined in terms of the
Goldstone bosons and their interactions specified by the SO(5) symmetry. The kinetic energy
of the system is that of a SO(5) rigid rotor and the system is described by an SO(5) nonlinear
quantum σ model (NLQσM). The SO(5) quantum rotor model offers a Landau–Ginzburg-
(LG)-like approach for the high-Tc problem. However, it goes far beyond the traditional LG
theory, since it captures dynamics. While the SO(5) symmetry was originally proposed in the
context of an effective field-theory description of the high-Tc superconductors, its prediction
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can also be tested within microscopic models [2–7]. For example, numerical evidence for
approximate SO(5) symmetry of the Hubbard model emerged from exact diagonalization of
small clusters [8]. The global features of the phase diagram deduced from SO(5) theory
based on a spherical quantum rotor [9] agree qualitatively with the general topology of the
observed phase diagram of high-Tc superconductors. The quantitative investigation of the
quantum critical point scenario within the concept of the SO(5) group, for example the
scaling of the contribution to the electrical resistivity due to spin fluctuations, showed a
linear resistivity dependence on temperature for increasing quantum fluctuation—this being a
hallmark example of anomalous properties in cuprate materials [10]. The systematic studies of
magnetic properties of the SO(5) theory showed that the theory yields a qualitative scenario for
the evolution of magnetic behaviour, which is consistent with experiments [11]. It qualitatively
explains the results of experimental measurements (notably the nuclear magnetic resonance
(NMR) relaxation rates) with correct predictions of behaviour of uniform spin susceptibility
at high temperatures. Also the energy dependence of the momentum-integrated dynamic spin
susceptibility shows features which are in qualitative agreement with experimental findings.

Thermal fluctuations are pronounced in the high-Tc superconductors for a number of
reasons. The carrier density is rather small, the anisotropy is large and the critical temperature
is high. It turns out that deviations from the mean-field behaviour are present in the specific heat
C at the SC transition temperature Tc. In the mean-field BCS theory, a second-order transition
with a jump in specific heat at Tc takes place. In contrast, in most high-Tc superconductors
thermal fluctuations seem to restore common behaviour.

The aim of this paper is to study quantitatively basic thermodynamic functions resulting
from the SO(5) theory, thereby substantiating this theoretical framework. Our study may also
provide a useful diagnostic tool for testing the basic principles of SO(5) theory by comparing
the quantitative predictions (e.g. specific heat) with the outcome of the relevant experiments.

The outline of the reminder of the paper is as follows. In section 2 we begin by setting
up the quantum SO(5) Hamiltonian and the corresponding Lagrangian. In section 3 we find
closed forms of various thermodynamic functions. We calculate free energy, entropy and
specific heat. Finally, in section 4 we summarize the conclusions to be drawn from our work.

2. The Hamiltonian and the effective Lagrangian

We consider the low-energy Hamiltonian of superspins placed in the nodes of a discrete three-
dimensional simple cubic (3DSC) lattice,

H = 1

2u

∑
i

∑
µ<ν

L
µν

i L
µν

i −
∑
i<j

Jijni · nj − V (ni ) − 2µ
∑
i

L15
i . (1)

Indices i and j number lattice sites running from 1 to N—the total number of sites, while µ,
ν = 1, . . . , 5 denote superspin ni = (n1, n2, n3, n4, n5)i components (nAF,i = (n2, n3, n4)i
refers to AF and nSC,i = (n1, n5)i SC order, respectively). The superspin components are
mutually commuting (according to Zhang’s formulation) and their values are restricted by the
rigidity constraint n2

i = 1.
The first part of the equation (1) is the kinetic energy of the system (being simply that of

a SO(5) rigid rotor), where

L
µν

i = nµipνi − nνipµi (2)
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are generators of Lie SO(5) algebra (expressed by total charge L15
i , spin and so-called ‘π ’

operators), pµi are momenta conjugated to respective superspin components,

pµi = i
∂

∂nµi
,

[nµ, pν] = iδµν,
(3)

and parameter u measures the kinetic energy of the rotors (an analogue of moment of inertia).
The second part of the Hamiltonian is the inter-superspin interaction energy with J being

the stiffness in the charge and spin channel. In the 3DSC lattice, J is nonvanishing for the
nearest neighbours and its Fourier transform

Jq = 1

N

∑
Ri

J (Ri )e
−iRi ·q (4)

is simply

Jq/J = cos qx + cos qy + cos qz. (5)

For convenience, we shall further introduce the density of states

ρ(ξ) = 1

N

∑
q

δ(ξ − Jq/J ), (6)

which for the 3DSC1 lattice reads

ρ(ξ) = 1

π3

∫ min(1,2−ξ)

max(−1,−2−ξ)

dy√
1 − y2

K



√

1 −
(
ξ + y

2

)2

$(3 − |ξ |) , (7)

where K(x) is the elliptic integral of the first kind and $(x) is the step function [12].
The last two parts of the equation (1) provide symmetry SO(5) breaking terms. In the

result of their interplay, the system favours either the ‘easy plane’ in the SC space (n1, n5), or
an ‘easy sphere’ in the AF space (n2, n3, n4). The first of the two terms is defined as

V (ni ) = w

2

∑
i

(n2
2i + n2

3i + n2
4i ), (8)

with the anisotropy constant w, of which positive value favours the AF state. The second term
contains a charge operator L15

i , whose expectation value yields the doping concentration and
the chemical potential µ (measured from half-filling), whose positive values favour the SC
state.

The partition function Z = Tr e−H/kBT is expressed using the functional integral in the
Matsubara ‘imaginary time’ τ formulation [9] (0 � τ � 1/kBT ≡ β, with T being the
temperature). We obtain

Z =
∫ ∏

i

[Dni]
∫ ∏

i

[
Dpi

2π

]
δ(1 − n2

i )δ (ni · pi )

×exp

{
−
∫ β

0
dτ [ip (τ ) · d

dτ
n (τ ) + H (n,p)]

}

=
∫ ∏

i

[Dni] δ(1 − n2
i )exp

{
−
∫ β

0
dτ L (n)

}
, (9)

1 Our approach is not restricted to the three-dimensional cubic lattice and can be easily accommodated to virtually
any other lattice (by using the proper density of states function).
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with L being the Lagrangian:

L (n) = 1

2

∑
i

[
u

(
∂nSC

∂τ

)2

+ u

(
∂nAF

∂τ

)2

− 4uµ2n2
SC + 4iuµ

(
∂n1

∂τ
n5 − ∂n5

∂τ
n1

)]

−
∑
i<j

Jijni · nj − w

2

∑
i

(n2
2i + n2

3i + n2
4i ). (10)

The problem can be solved exactly in terms of the spherical model [13]. To accommodate
this we notice that the superspin rigidity constraint (n2

i = 1) implies that a weaker condition
also holds, namely

N∑
i=1

n2
i = N. (11)

Therefore, the superspin components ni (τ ) must be treated as c-number fields, which
satisfy the quantum periodic boundary condition ni (β) = ni (0) and are taken as continuous
variables, i.e. −∞ < ni (τ ) < ∞, but constrained (on average, due to equation (11)) to have
unit length.

This introduces the Lagrange multiplier λ (τ) adding an additional quadratic term (in ni

fields) to the Lagrangian (10). The Fourier transform n(k, ω.) of the superspin components

ni (τ ) = 1

βN

∑
k

∞∑
.=−∞

n (k, ω.) e−i(ω.τ−k·ri ) (12)

introduces the Matsubara (Bose) frequencies ω. = 2π./β (. = 0,±1,±2, . . . ).
Using the equation (9), the partition function can be written in the form

Z =
∫

dλ

2π i
e−Nφ(λ), (13)

where the function φ (λ) is defined as

φ(λ) = −
∫ β

0
dτ λ(τ) − 1

N
ln
∫ ∏

i

[Dni] exp

[
−
∑
i

∫ β

0
dτ (n2

i λ(τ ) − L[n])

]
. (14)

The exact value of the partition function can be found in the thermodynamic limit
(N → ∞), when the method of steepest descents is exact and the saddle point λ (τ) = λ0

satisfies the condition

δφ (λ)

δλ (τ)

∣∣∣∣
λ=λ0

= 0. (15)

At criticality, corresponding order parameter susceptibilities become infinite and corresponding
Lagrange multipliers are

λAF0 = 1

2
Jk=0 +

w

2
,

λSC0 = 1
2Jk=0 + 2χµ2,

(16)

for AF and SC critical lines, respectively. Furthermore, using the spherical condition (11) and
the values (16), we finally arrive at the expression for the critical lines separating AF, SC and
QD (quantum disordered) states (for more specific description of these calculations see [9,11]).
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3. Thermodynamic functions

3.1. Free energy

The free energy is defined as f = − (βN)−1 lnZ = (β)−1 φ (λ0). Using the formula (14), we
obtain

f = −λ +
3

2βN

∑
k,.

ln[2λ − Jk + uω2
. − w] +

1

2βN

∑
k,.

ln[2λ − Jk + u (ω. + 2iµ)2]

+
1

2βN

∑
k,.

ln[2λ − Jk + u (ω. − 2iµ)2]. (17)

After performing the summation over Matsubara’s frequencies, we obtain the free energy:

f = −λ +
1

β

∫ ∞

−∞
ρ (ξ) dξ

{
3 ln 2 sinh

(
β

2

√
2λ − Jξ − w

u

)

+ ln 2 sinh

[
β

2

(√
2λ − Jξ

u
− 2µ

)]
+ ln 2 sinh

[
β

2

(√
2λ − Jξ

u
+ 2µ

)]}
.

(18)

3.2. Entropy

The entropy is defined as S = kBβ
2∂f/∂β. Using the formula (18) we obtain

S (β) = kB

2

∫ ∞

−∞
ρ (ξ) dξ

{
3

[
βA (ξ) coth

β

2
A (ξ) − 2 ln 2 sinh

β

2
A (ξ)

]

+

[
βB− (ξ) coth

β

2
B− (ξ) − 2 ln 2 sinh

β

2
B− (ξ)

]

+

[
βB+ (ξ) coth

β

2
B+ (ξ) − 2 ln 2 sinh

β

2
B+ (ξ)

]}
, (19)

where

A (ξ) =
√

2λ − Jξ − w

u
,

B− (ξ) =
√

2λ − Jξ

u
− 2µ,

B+ (ξ) =
√

2λ − Jξ

u
+ 2µ.

(20)

The dependence of the entropy on temperature and chemical potential is shown in figure 1.
Starting from T = 0, the entropy increases in any ordered phase (AF or SC) until reaching Tc
(or TN ). The further increase is slower, but saturation in higher temperatures is not observed.
The absolute value of the entropy is lower for higher quantum fluctuation (see, figure 2).
We find obtained results in qualitative agreement with experimentally measured properties of
high-Tc superconductors (e.g. for the Bi2212 compound, see [14]).

3.3. Specific heat

The specific heat at constant volume is defined

C = −kBβ
2 ∂2

∂β2
(βf ) = −kBβ

2

{
2
∂f

∂β
+ β

∂2f

∂β2
+ β

dλ

dβ

[
∂2f

∂λ2

dλ

dβ
+ 2

∂2f

∂λ∂β

]}
. (21)
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/ J
k T / JB

S / kB

µ

Figure 1. Plot of the entropy S versus chemical potential µ/J and temperature kBT /J for fixed
uJ = 3 and w/J = 1. Solid curves indicate the projection of the µ–T phase diagram.

(This figure is in colour only in the electronic version)

kBT/J

0.00 0.25 0.50 0.75 1.00

S/
k B

0

1
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3

4

uJ = 5
uJ = 4
uJ = 3
uJ = 2

Figure 2. Plot of the entropy S versus temperature kBT /J for w/J = 1, µ/J = 0.2 and different
values of uJ , as indicated in the inset.

The derivative dλ/dβ can be found from the saddle-point condition (15):

∂f [λ (β) , β]

∂λ

∣∣∣∣
λ=λ0

= 0. (22)

Explicitly, we obtain

dλ

dβ
= −∂2f/∂λ∂β

∂2f/∂λ2
. (23)

The specific heat

C = −kBβ
2

[
2
∂f

∂β
+ β

∂2f

∂β2
+ β

dλ

dβ

∂2f

∂λ∂β

]
. (24)

Using the formula (18) we obtain

C = kBβ
2

4

∫ ∞

−∞
ρ(ξ) dξ

{
3A2(ξ) sinh−2 β

2
A(ξ)

+B2
−(ξ) sinh−2 β

2
B−(ξ) + B2

+(ξ) sinh−2 β

2
B+(ξ)

}
+
kBβ

3

4u

dλ

dβ

∫ ∞

−∞
ρ (ξ) dξ
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kBT/J

0.0 0.1 0.2 0.3 0.4 0.5 0.6

C
µ/

k B

0.00

0.55

1.10

1.5

2.20

/J = 0

/J = /J

µ

µ

µµ

/J = 0.44

c

Figure 3. Specific heat versus temperature kBT /J for w/J = 1, uJ = 3 and various values of
chemical potential, as indicated in the figure.

×
{

3 sinh−2 β

2
A (ξ) +

B− (ξ)

C (ξ)
sinh−2 β

2
B− (ξ) +

B+ (ξ)

C (ξ)
sinh−2 β

2
B+ (ξ)

}
,

(25)

where A (ξ), B− (ξ) and B+ (ξ) are defined by formula (20),

C (ξ) =
√

2λ − Jk

u
, (26)

and
dλ

dβ
= −u

2

∫ +∞

−∞
ρ (ξ) dξ

{
3 sinh−2 β

2
A (ξ) +

B− (ξ)

C (ξ)
sinh−2 β

2
B− (ξ)

+
B+ (ξ)

C (ξ)
sinh−2 β

2
B+ (ξ)

}/∫ +∞

−∞
ρ (ξ) dξ

{
β

2A2 (ξ)
sinh−2 β

2
A (ξ)

+
coth β

2A (ξ)

A3 (ξ)
+

β

2C2 (ξ)
sinh−2 β

2
B− (ξ)

+
coth β

2B− (ξ)

C3 (ξ)
+

β

2C2 (ξ)
sinh−2 β

2
B+ (ξ) +

coth β

2B+ (ξ)

C3 (ξ)

}
. (27)

The temperature dependence of the specific heat is presented in figure 3. The low-
temperature behaviour of C(T ) may be approximated by C(T ) ∼ T 3 for µ/J = 0 and
C(T ) ∼ T 2.5 for µ/J = 0.44. For higher temperatures (but still below the transition
temperature) the linear behaviour of the specific heat is observed. Reaching the critical
temperature (Tc or TN ), the specific heat experiences a finite jump (implying the value α = 0
for the critical exponent of the specific heat). For higher temperatures, saturation is observed.

4. Summary and final remarks

In conclusion, we have calculated the entropy and specific heat dependence on temperature
and various other parameters using the unified theory of AF and SC proposed for the high-Tc
cuprates by Zhang and based on the SO(5) symmetry between AF and SC states. The theory
yields a qualitative scenario for the evolution of thermodynamic function behaviour, which
is consistent with experiments. Most experimental work on the specific heat in the high-Tc
superconductors has concentrated on the yttrium compound Y-123 [15–17]. Optimally doped
Y-123 does not show a jump in the specific heat, but a λ-peak at Tc. However, the shape for
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overdoped Y-123 is intermediate between a BCS step and a λ-type transition. Furthermore,
optimally doped Bi-2212 shows a symmetric anomaly (intermediate between a λ-peak and
finite jump). Experimentally, the specific heat is not very sensitive to the critical exponent α
and one can ascertain that |α| � 1 for Y-123 compounds. However, the result of the present
work (α = 0) agrees with the critical behaviour of the 3D-XY model. Finally, checking the
validity of basic principles of the SO(5) theory, by comparing parameters discussed here with
relevant ones obtained from calculations on microscopic models of high-Tc superconductors,
is still called for.
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